Chem. Ber. 119, 2473-2496 (1986)

Relative Reaktivität Alkyl-substituierter Alkene und Cycloalkene gegenüber Diarylcarbenium-Ionen

Herbert Mayr* und Rudolf Pock

Institut für Chemie der Medizinischen Universität zu Lübeck, Ratzeburger Allee 160, D-2400 Lübeck 1

Eingegangen am 17. Februar 1986

Nach der Konkurrenzmethode wurden die relativen Reaktivitäten Alkyl-substituierter Alkene 4 gegenüber Diarylmethyl-Kationen 2 bestimmt, die in Gegenwart von Alken-Gemischen aus Diarylmethylchloriden 1 und Lewis-Säuren erzeugt wurden. Die Konkurrenzkonstanten werden durch die Art der Lewis-Säure nur wenig beeinflußt, so daß eine eventuelle Differenz der freien Solvatationsenthalpie verschiedener aktivierter Komplexe von der Natur des Gegenions unabhängig sein muß. Aus der 6–50fachen Reaktionsbeschleunigung durch Methylgruppen, die sich am angegriffenen Alken-Kohlenstoff befinden und der 10⁴fachen Reaktivitätssteigerung durch Methylgruppen am neuen Carbeniumzentrum wird auf einen wenig verbrückten Übergangszustand geschlossen.

Relative Reactivities of Alkyl-Substituted Alkenes and Cycloalkenes towards Diarylcarbenium Ions

The relative reactivities of alkyl-substituted alkenes 4 towards diarylmethyl cations 2 generated *in situ* from diarylmethyl chlorides 1 and Lewis acids were determined by competition experiments. The relative reactivities were almost independent of the nature of the Lewis acid. Eventual differences of the solvation free enthalpies of various activated complexes are, therefore, independent of the nature of the gegen ions. The rate acceleration by methyl groups -6-50 by CH₃ at the attacked vinylic position and approximately 10^4 at the developing carbenium centre - indicates a scarcely bridged transition state.

Elektrophile Reaktionen mit Alkenen zählen zu den am eingehendsten untersuchten Reaktionen der organischen Chemie¹⁾. Für Halogenierungen, Hydroborierungen, Oxymercurierungen, Arylsulfenylierungen, Carben-Additionen und Säure-katalysierte Hydratisierungen wurden Geschwindigkeitskonstanten oder relative Reaktivitäten verschiedener Alkene bestimmt^{1b)}. Mechanistisch wenig untersucht sind dagegen die zur CC-Verknüpfung nutzbaren Additionen von Carbenium-Ionen an Alkene. Von vereinzelten Beispielen abgesehen²⁾, stammen die derzeitigen Informationen über Alken-Reaktivitäten gegenüber Carbenium-Ionen ausschließlich aus Untersuchungen von carbokationischen Copolymerisationen³⁾. Da die Kenntnis solcher Daten nicht nur für die makromolekulare Chemie⁴⁾, sondern auch für die Planung organischer Synthesen über aliphatische Friedel-Crafts-Reaktionen von Bedeutung ist⁵⁾, haben wir eine systematische kinetische Untersuchung der Additionen von Carbenium-Ionen an Alkene begonnen. Wir berichten hier über relative Reaktivitäten Alkyl-substituierter Alkene und Cycloalkene gegenüber Arylcarbenium-Ionen⁶⁾.

© VCH Verlagsgesellschaft mbH, D-6940 Weinheim, 1986 0009-2940/86/0808-2473 \$ 02.50/0

1. Reaktionsprodukte

Diphenylmethylchlorid (1') und sein Dimethylderivat 1" eignen sich wegen ihrer hohen Ionisierungstendenz gut zur elektrophilen Alkylierung von Alkenen. In Übereinstimmung mit früheren Voraussagen⁷⁾ bzw. Untersuchungen^{5,8)} liefern die Zinkchlorid/Ether-katalysierten⁹⁾ Umsetzungen von 1' und 1" mit den Alkenen

Schema 1

$\overset{\mathbf{R}^{1}}{\overset{\mathbf{R}^{3}}{\underset{\mathbf{R}^{2}}{\overset{\mathbf{R}^{4}}{\overset{\mathbf{R}^{4}}{\overset{\mathbf{R}^{3}}{\overset{\mathbf{R}^{4}}{\overset{\mathbf{R}^{3}}{\overset{\mathbf{R}^{4}}{\overset{\mathbf{R}^{3}}{\overset{\mathbf{R}^{4}}{\overset{\mathbf{R}}{\overset{1}}{\overset{1}}{\overset{1}}{$		Produkte (% Ausb.) mit 1'	Produkte (% Ausb.) mit 1"
	4a	3a' (92) ^{a)} , 8a' (Spur)	3a" (34), 8a" (10), 10a" (14)
	4b	3b' (41), 8b' (8) ^{b)}	3b" (61), 8b" (6) ^{b)}
<u> </u>	4c	3c' (68), 8b' (10) ^{b)}	3c" (90), 8b" (5) ^{b)}
\neq	4d	3d* (97)»)	3d" (95)
=	4e	3e' (89)	3e" (91)
=	4f	3f' (96) ^{c)}	3f" (91)
\searrow	4g	3g' (89) ^{d)}	3g" (68), 10g" (10)
\succ	4h	3h " (33), 10h " (60) ^{e)}	
\Rightarrow	4 i		3i" (87)
	4j		3j" (82)
\Rightarrow	4k		3k" (87)
\triangleleft	41		3i" (84)
À	4m	11' (98) ^{f)}	11" (98) ^{†)}

Tab. 1. Reaktionsprodukte der ZnCl₂-katalysierten Umsetzung der Diarylmethylchloride 1' und 1" mit verschiedenen Alkenen

^{a)} Lit.⁸⁾. – ^{b)} Diese Reaktionen verlaufen nicht vollständig stereospezifisch und liefern neben **8** noch weitere Produkte in geringen Mengen. Über Details wird gesondert berichtet¹⁰⁾. – ^{e)} Lit.⁹⁾. – ^{d)} Bei höherer Konzentration an ZnCl₂/Et₂O entsteht neben **3g'** auch **9g'** und wenig **10g'**. – ^{e)} Produktverhältnis von den Reaktionsbedingungen abhängig. – ⁰ Lit.¹¹⁾. 4a - m in hohen Ausbeuten 1:1-Produkte (Tab. 1), weil die Addukte als sekundäre oder tertiäre Alkylhalogenide langsamer ionisieren als die Reaktanten 1' und 1".

Die Bildung der Hauptprodukte 3 erfolgt nach Schema 1 durch Anlagerung eines Chlorid-Ions an die Kationen 6, die bei der Addition der Diarylcarbenium-Ionen 2 an die Alkene 4 zunächst entstehen. Bei der Reaktion mit den *cis,trans*isomeren Butenen 4b und 4c erhält man vorwiegend in einer *anti*-Addition die Diastereomeren 3b und 3c, worüber an anderer Stelle detailliert berichtet wird¹⁰. Ist 6 ein sekundäres Carbenium-Ion (a – c), erfolgt meist in gewissem Ausmaß eine 1,2-H-Verschiebung unter Bildung von 5, woraus durch Deprotonierung die 1,1-Diarylethylen-Derivate 8 hervorgehen.

Sind \mathbb{R}^1 und \mathbb{R}^2 Methylgruppen, begünstigt der gem-Dialkyl-Effekt¹² die Cyclisierung zum Indan: 10h' entsteht als Hauptprodukt der Umsetzung von 1' mit Tetramethylethylen (4h). Im Fall des Trimethylethylen-Addukts 6g' ($\mathbb{R}^1 = CH_3$, $\mathbb{R}^2 = H$) ist die Cyclisierungstendenz geringer: Neben dem normalen Additionsprodukt 3g' erhält man geringe Mengen des Indans 10g' sowie eine Spur des terminalen Olefins 9'. Die Umsetzung von Norbornen liefert, wie kürzlich beschrieben¹¹, exo-2-Chlor-syn- und -anti-7-alkylierte Norbornane, die sich unter den hier beschriebenen HPLC-Bedingungen nicht voneinander trennen lassen und daher im folgenden als einheitliches Produkt 11' bzw. 11" betrachtet werden.

How CHAr₂
Cl
$$11^{\circ}$$
: Ar = Ph
 11° : Ar = ρ -Tol

2. Irreversibilität der Additionsreaktionen

Da die relativen Alken-Reaktivitäten nach der Konkurrenzmethode bestimmt werden sollten, mußte sichergestellt sein, daß die Additionsreaktionen irreversibel ablaufen, weil nur dann aus dem Verhältnis der Additionsprodukte Rückschlüsse auf die relativen Additionskonstanten gezogen werden können.

Daher wurde 3d', das Additionsprodukt von Diphenylmethylchlorid (1') an Isobuten (4d), in Gegenwart von ZnCl₂ mit überschüssigem Trimethylethylen (4g) behandelt (Schema 2). Das Addukt 3d' blieb hierbei unverändert. Entsprechend führte auch die Behandlung von 3g' mit Isobuten unter den Bedingungen der Additionsreaktion nicht zum Entstehen von 3d'.

Chem. Ber. 119 (1986)

Das in Schema 2 beschriebene Experiment schließt eine Rückspaltung der Additionsprodukte 3 in 2 und 4 unter den hier gewählten Reaktionsbedingungen aus. Daraus folgt jedoch nicht zwingend die Irreversibilität des Additionsschrittes; eine reversible Bildung von 6 aus 2 und 4, der sich eine irreversible Chloridanlagerung unter Bildung von 3 anschließt, wäre mit dieser Beobachtung ebenfalls vereinbar. Diese Möglichkeit wurde durch das in Schema 3 skizzierte Kreuzungsexperiment ausgeschlossen.

Schema 3

Setzt man das aus 3d' zugängliche Alken 4n unter den üblichen Additionsbedingungen mit Phenyltolylmethylchlorid (1''') um, erhält man ausschließlich das Additionsprodukt 3n mit einer Tolyl- und drei Phenylgruppen. Dasselbe Additionsprodukt erhält man in gleicher Weise aus dem Alken 40 und 1'. Wäre die Bildung von 6n aus 40 und 1' reversibel, müßte 6n parallel zur Rückreaktion auch eine Spaltung in 4n und 1''' eingehen. Man würde ein Produktgemisch erwarten, das außer 3n noch 3p und 3q, die Kopplungsprodukte aus 1' und 4nbzw. 1''' und 40, enthält. Im Massenspektrum des ölig anfallenden Additionsproduktes 3n fehlten jedoch charakteristische Signale der unabhängig synthetisierten Verbindungen 3p und 3q, so daß die Spaltung von 6n ausgeschlossen werden kann. Während für die anderen Kationen des Typs 6, die im Rahmen dieser Studie auftreten, wegen ihrer ähnlichen Struktur ein entsprechendes Verhalten erwartet werden kann, muß bei Additionen stark dotierter Diarylcarbenium-Ionen die oben diskutierte Rückreaktion in Betracht gezogen werden¹³.

3. Relative Alken-Reaktivitäten aus Konkurrenzexperimenten

Um die relative Reaktivität zweier Alkene zu bestimmen, wurden unterschiedlich zusammengesetzte Gemische von zwei Alkenen in Dichlormethan bei -70 bzw.

-78 °C in Gegenwart von Zinkchlorid/Ether mit einer geringen Menge an 1' bzw. 1" versetzt. Dabei erhielt man Gemische von 1:1-Produkten, die mit Hilfe der HPLC-Methode analysiert wurden.

Schema 5

4s H₂C=CH-CH₂Si(CH₃)₃

Da es im allgemeinen nicht zweckmäßig war, die Alkene in so großem Überschuß einzusetzen, daß ihr Verhältnis während der Reaktion annähernd konstant blieb, wurden die Konkurrenzkonstanten nach Gl. (1) bestimmt, in die außer den Anfangskonzentrationen der Reaktanten nur das Verhältnis der beiden Additionsprodukte eingeht¹⁴.

$$k_{\rm x}/k_{\rm y} = \lg \left(1 - \frac{[1]_0 R}{[4 {\bf x}]_0 (1 + R)} \right) / \lg \left(1 - \frac{[1]_0}{[4 {\bf y}]_0 (1 + R)} \right) \text{ wobei } R = \frac{[3 {\bf x}]}{[3 {\bf y}]}$$
(1)

Jede Konkurrenzkonstante wurde mehrfach bestimmt, wobei die relativen Alken-Konzentrationen variiert wurden. Dabei erhielt man die in Schema 5 wiedergegebenen Konkurrenzkonstanten mit durchschnittlichen Standardabweichungen von $\pm 4.3\%$. Da hierbei systematische Fehler unentdeckt bleiben, wurde in vielen Fällen die relative Reaktivität eines Olefin-Paars sowohl direkt wie auch durch Vergleich mit einem dritten Alken bestimmt. Die auf verschiedenen Wegen ermittelten relativen Geschwindigkeitskonstanten unterscheiden sich um durchschnittlich $\pm 6\%$.

Die hier und in Lit.^{15,16)} angegebenen Geschwindigkeitsverhältnisse wurden logarithmiert, wobei man ein überbestimmtes lineares Gleichungssystem erhielt, das nach der Methode der kleinsten Fehlerquadrate gelöst wurde. Die auf diese Weise gemittelten k_{ref} -Werte sind in Schema 5 angegeben.

In Tab. 2 werden die mit verschiedenen Katalysatoren bestimmten relativen Reaktivitäten von 2-Methyl-1-penten (4f) und Norbornen (4m) gegenüber dem Diphenylcarbenium-Ion verglichen. Die relativ geringen Unterschiede dieser Werte deuten an, daß eventuelle Differenzen der freien Solvatationsenthalpie verschiedener aktivierter Komplexe von der Natur des Gegenions kaum beeinflußt werden. Dadurch läßt sich eine spezifische Kation-Anion-Wechselwirkung ausschließen, insbesondere daß im Übergangszustand die Ausbildung der neuen Kohlenstoff-Halogen-Bindung bereits eingesetzt hat. Es ist jedoch denkbar, daß die Konkurrenzkonstante von der Art des Anions abhängig wird, wenn bei der Addition weniger stabilisierte Carbenium-Ionen entstehen.

1' (mmol)	4f (mmol)	4m (mmol)	Lewis-Säure (mmol)	k41/k4m
0.51 0.48-0.58 0.38-0.63	$ \begin{array}{r} 1.1 - 1.2 \\ 0.69 - 0.84 \\ 0.74 - 0.90 \end{array} $	16-20 8.7-27.3 9.1-27.4	ZnCl ₂ (1.9)/Et ₂ O (3.0) BCl ₃ (0.95) SnCl ₄ (0.85)	$\begin{array}{c} 21.4 \ \pm \ 0.07 \ (2) \\ 18.5 \ \pm \ 0.9 \ \ (3) \\ 18.4 \ \pm \ 0.4 \ \ (3) \end{array}$

Tab. 2. Abhängigkeit der Konkurrenzkonstanten von Art und Menge der Lewis-Säure bei -78 °C

Besitzt ein Molekül mehrere Mehrfachbindungen, liegt eine intramolekulare Konkurrenz-Situation vor. Limonen (4r) kann mit 1" an der exo- oder endocyclischen Doppelbindung reagieren, wobei die Produkte 3ra und 3rb (Konfiguration unklar!) unter $\text{ZnCl}_2/\text{Et}_2\text{O}$ - oder SnCl_4 -Katalyse im Verhältnis 2.5:1 entstehen. Da dieses Verhältnis annähernd dem Reaktionsverhältnis 4f/41 entspricht, zeigt es sich, daß die Konkurrenzdaten in Schema 5 zur Vorhersage der Position des elektrophilen Angriffs an mehrfach ungesättigten Systemen genutzt werden können.

4. Diskussion

Schema 5 zeigt, daß die Reaktivitätsabstufung der Alkene 4a - m gegenüber den beiden Elektrophilen 2' und 2" ähnlich ist. Aus dem Reaktivitätsverhältnis der beiden Alkene 4f/4m gegenüber 2' (21.4) und 2" (27.7) und dem Verhältnis 4m/4a gegenüber 2' (304) und 2" (1152) ließe sich eine höhere Selektivität des weniger reaktiven Carbenium-Ions 2" ableiten. Diese Beziehung gilt jedoch nicht allgemein, da sich bei den Vergleichen 4g/4f und 4c/4a das reaktivere Carbenium-Ion 2' als selektiver erweist. Das hierbei zutage tretende inverse Reaktivitäts-Selektivitäts-Verhalten scheint dadurch bedingt zu sein, daß Methylgruppen am angegriffenen Zentrum des Alkens die Additionsbereitschaft gegenüber dem reaktiveren Carbenium-Ion stärker fördern, was auch bei der Einführung von β -Methylgruppen in Styrol gefunden wurde¹⁵⁾. Da das derzeit verfügbare Material für eine fundierte Reaktivitäts-Selektivitäts-Diskussion¹⁷⁾ noch nicht ausreicht, wollen wir hier auf die Unterschiede bei der Wahl von 1' bzw. 1" als Bezugssystem noch nicht eingehen.

	_/	\neq	<u> </u>	=
	4a	4d	4e	4f
$k_{rel}(Ph_2CH^+ = 2^*)$	1.0	5800	8000	6900
$k_{\rm rel}({\rm Tol}_2{\rm CH}^+ = 2^{-})$	1.0	-	2 29 10	31650

Erwartungsgemäß unterscheiden sich die 1,1-dialkylierten Alkene 4d, e, f nur wenig in ihrer Reaktivität gegenüber Diarylcarbenium-Ionen. Sie sind etwa 10⁴mal reaktiver als Propen (4a), einem $\Delta\Delta G^{+}$ -Wert von 3.5-4.2 kcal/mol (-70°C) entsprechend.

Arnett berichtete, daß die Ionisierung von Isopropylchlorid $[\rightarrow (CH_3)_2CH^+]$ mit Antimonpentafluorid in SO₂ClF um 9.5 kcal/mol weniger exotherm ist als die von tert-Butylchlorid^{18,19}. Daraus läßt sich in Kombination mit den Bildungswärmen²⁰) von Isopropylchlorid, tert-Butylchlorid, Propen und Isobuten abschätzen, daß die Bildung eines tertiären Carbenium-Ions aus Isobuten in SO₂ClF um 9.2 kcal/mol stärker exotherm sein sollte als die Bildung eines sekundären Carbenium-Ions aus Propen (Abb. 1). Nach der gleichen Methode ermittelt man aus den Ionisierungswärmen in Dichlormethan¹⁸, daß sich in diesem Lösungsmittel

der Unterschied dieser relativen Protonierungswärmen auf 7.3 kcal/mol verkleinert. Unter der Annahme konstanter Entropie-Unterschiede ergibt sich daraus, daß im Übergangszustand der hier untersuchten Additionsreaktionen die unterschiedliche Stabilisierung der entstehenden Carbenium-Ionen zu etwa 50% ausgeprägt ist.

Abb. 1. Abschätzung der relativen Reaktionsenthalpie der Protonierung von Isobuten und Propen in SO₂ClF (kcal/mol) a) ΔH der Reaktion R-Cl + SbF₅ \rightarrow R⁺ in SO₂ClF: Lit.^{18,19}; b) ΔH_{f}° (fl.): Lit.²⁰

Methylencyclobutan (4i) und Methylencyclohexan (4k) unterscheiden sich in ihrer Reaktivität nur wenig von 2-Methyl-1-penten (4f). Dieser Befund ist nicht überraschend, da es sich jeweils um 1,1-dialkylsubstituierte Alkene handelt. Außerdem sollten Ringspannungseffekte keine Rolle spielen, da die Hybridisierung der Ringkohlenstoffe beim elektrophilen Angriff nicht verändert wird. Obwohl diese Argumente in gleicher Weise auch für Methylencyclopentan (4j) gelten, ist dieses Olefin deutlich reaktiver.

Die ungewöhnlich rasche Bildung von Cyclopentyl-Kationen wurde wiederholt beim Vergleich der Solvolysegeschwindigkeiten von Cyclopentyl-Derivaten mit Cyclohexyl und entsprechenden acyclischen Verbindungen beobachtet (Tab. 3) und durch den Wegfall ekliptischer Wechselwirkungen bei der Heterolyse des Fünfring-Derivats erklärt²¹.

Diese Deutung ist jedoch fragwürdig, da Arnett annähernd gleiche Ionisierungswärmen für 1-Chlor-1-methylcyclopentan, 1-Chlor-1-methylcyclohexan und 2-Chlor-2-methylbutan fand¹⁹⁾, obwohl diese Daten ebenfalls den Abbau an Spannung beim Fünfring wiedergeben müßten.

R	x	Reaktionsbedingungen	(CH ₃) ₂ C X		
CH₃	Cl	80% Ethanol, 25°C	1.00	44	0.35
H	Cl	50% Ethanol, 95°C	1.00	5.2	0.36
H	OTs	Essigsäure, 50°C	1.00	18	0.88

Abb. 2. Abschätzung der relativen Reaktionsenthalpie der Protonierung von Methylencyclopentan (4j) und Methylencyclohexan (4k) in SO₂ClF (kcal/mol). a) ΔH_{f}° (fl.): Lit.¹⁹; b) ΔH_{f}° (fl.): Lit.²⁰; c) ΔH der Reaktion R - Cl + SbF₅ \rightarrow R⁺ in SO₂ClF: Lit.¹⁹

Aus Arnetts Ionisierungswärmen lassen sich nach Abb. 2 relative Protonierungswärmen für 4j und 4k abschätzen, die im Rahmen der Meßgenauigkeit übereinstimmen. Aus den experimentell bestimmten Protonenaffinitäten von Methylcyclopenten und Methylcyclohexen^{22a)} lassen sich unter Berücksichtigung der verschiedenen Grundzustandsenergien^{22b)} für 4j und 4k gleicheProtonenaffinitäten ableiten. Damit übereinstimmend wurden für die Protonierung von Cyclopentanon (-17.6 kcal/mol) und Cyclohexanon (-18.2 kcal/mol) in Fluorsulfonsäure nahezu gleiche Reaktionswärmen gefunden²²⁾. Schließlich läßt sich auch in den ¹³C-NMR-Spektren 1-Aryl-substituierter Cyclopentyl- und Cyclohexyl-Derivate durch das "tool of increasing electron demand" kein Hinweis auf eine unterschiedliche Stabilisierung der positiven Ladung in Fünf- und Sechsring finden²³⁾.

	_	/	\rightarrow	\searrow	\succ
	4a	4c	4d	4g	4h
$k_{\rm rel}({\rm Ph}_2{\rm CH}^+ = 2^{\circ})$	1.00	33.6	1.00	52.6	27.7
IP(eV) ²⁷⁾	9.74	9.12	9.24	8.68	8.27

Dennoch wird Methylencyclopentan (4j) 50mal rascher als 4k durch 2" angegriffen, und auch bei den elektrophilen Additionen von ISCN $(k_{4j}:k_{4k} = 2.1)$, 2,4- $(NO_2)_2C_6H_3SCI$ (3.1) und NOCl (5.3)²⁴⁾ sowie von Dichlorcarben (2.4)²⁵⁾ erweist sich 4j reaktiver als 4k. Da auch die Ionisierungspotentiale dieser beiden Alkene kein eindeutiges Indiz für die höhere Reaktivität von 4j ergeben (4j: 9.15 eV, 4k: 9.13 eV)²⁶⁾, müssen wir den Grund für diesen kinetischen Effekt ebenso offen lassen wie die Ursache für die rasche Solvolyse der Cyclopentyl-Derivate.

trans-2-Buten reagiert mit Diarylmethyl-Kationen um etwa eine Zehnerpotenz rascher als Propen. Vernachlässigt man die unterschiedliche Zahl an gauche-Wechselwirkungen in den Additionsprodukten an Propen und trans-Buten, läßt sich aus Abb. 3 entnehmen, daß die elektrophile Addition an Propen um etwa 3 kcal/ mol stärker exotherm sein sollte als die entsprechende Reaktion mit trans-Buten, woraus man die umgekehrte Reaktivitätsabstufung ableiten würde.

Abb. 3. Einfluß von β -Methyl-Substituenten (kcal/mol) auf die relativen Protonierungswärmen von Alkenen in SO₂ClF. a) ΔH_{1}° (fl.): Lit.¹⁹; b) ΔH_{1}° (fl.): Lit.²⁰; c) ΔH der Reaktion $R - Cl + SbF_{5} \rightarrow R^{+}$ in SO₂ClF: Lit.¹⁹

Die Einführung einer β -Methylgruppe in Isobuten $(4d \rightarrow 4g)$ bewirkt eine noch deutlichere Reaktivitätssteigerung, während die zweite β -Methylgruppe $(\rightarrow 4h)$ eine geringfügige Verlangsamung verursacht. Abb. 3 zeigt, daß Protonenanlagerungen an diese drei Alkene zu vergleichbaren Wärmetönungen führen. Wir nehmen daher an, daß ein partiell verbrückter Übergangszustand bzw. die Anhebung des HOMO für den Reaktivitätsanstieg von $4a \rightarrow 4c$ und $4d \rightarrow 4g$ verantwortlich ist. Die gleichzeitig erhöhte sterische Repulsion wird dadurch überkompensiert. Erst bei der Einführung der zweiten β -Methylgruppe $(\rightarrow 4h)$ wirkt sich die sterische Reaktionsverzögerung etwas stärker aus als die elektronische Beschleunigung.

Aufgrund der besonderen Stabilisierung des Norbornyl-Kations und der gespannten Doppelbindung in Norbornen ergibt sich für **4m** nach Abb. 3 eine relative Protonierungswärme, die der von 1,1-dialkylierten Alkenen entspricht. Die Geschwindigkeit der Carbenium-Additionen an Norbornen wie auch die der entsprechenden Protonierung²⁸, die zwischen der von 1,2- und 1,1-dialkylierten Ethylenen liegt, ist daher geringer als aufgrund der thermodynamischen Überlegungen erwartet. Die viel diskutierte ungewöhnlich hohe Reaktivität von Norbornen, die

bei Cycloadditionen²⁹⁾ und auch bei Additionen einiger Elektrophile (Tab. 4) beobachtet wird, könnte auf Reaktionen mit cyclischem Übergangszustand beschränkt sein.

5. Vergleich mit anderen elektrophilen Additionen

Für den Angriff eines Elektrophils an eine CC-Doppelbindung sind zwei extreme Situationen denkbar (Schema 6): a) Das Elektrophil nähert sich einem Ende der Doppelbindung, so daß ein unverbrücktes Carbenium-Ion entsteht. b) Der elektrophile Angriff erfolgt auf die Mitte des π -Systems, wobei ein symmetrisch verbrücktes Kation erhalten wird.

Melloni, Modena und *Tonellato* zeigten, daß Elektrophile der Kategorie a) mit Alkenen und Alkinen ähnlich rasch reagieren, während Elektrophile der Kategorie b) gegenüber Alkenen deutlich reaktiver sind als gegenüber Alkinen³⁰. Carbenium-Ionen wurden, wie Proton-Additionen, in Kategorie a) eingeordnet, da sie gegenüber Alkenen und entsprechend substituierten Alkinen ähnliche Reaktivität zeigten. *Ruasse, Dubois* und *Argile* verwendeten als Kriterium zur Unterscheidung cyclischer und acyclischer Übergangszustände bei Bromierungen, Sulfenylierungen und Hydratisierungen den Einfluß von Methylgruppen auf die Reaktionsgeschwindigkeit³¹. Zur Anwendung dieses mechanistischen Kriteriums auf die Additionen von Carbenium-Ionen werden in Tab. 4 die hier bestimmten relativen Reaktivitäten anderen elektrophilen Additionen gegenübergestellt.

Tab. 4 zeigt charakteristische Reaktivitätsunterschiede zwischen monoalkylierten sowie 1,2- und 1,1-dialkylierten Alkenen: Während bei Hydratisierungen die Reaktivitätssteigerung von Propen zu *trans*-2-Buten 15 beträgt, beträgt sie zu Isobuten 5 Zehnerpotenzen, in Einklang mit einem nicht verbrückten Übergangszustand. Im Gegensatz dazu sind *trans*-Buten *und* Isobuten gegenüber Cl_2 und Br_2 etwa 50mal reaktiver als Propen; dies ist für einen verbrückten Übergangszustand zu erwarten, bei dem beide ehemaligen sp²-Kohlenstoffe einen Teil der positiven Ladung tragen (Halonium-Ionen-Charakter). Methyl-Effekte wie bei Halogenierungen wurden auch bei den Additionen von Nitrosylchlorid gefunden, für die ein viergliedriger Ring als Übergangszustand diskutiert wurde. Deutlich schwächer ausgeprägt sind die Methyl-Effekte bei den in Tab. 4 angeführten Sulfenylierungen, Selenylierungen und Quecksilberacetat-Additionen, bei denen der Alken-Teil im Übergangszustand kaum positive Ladung übernommen hat.

Der Vergleich der Substituenten-Effekte in Tab. 4 zeigt deutlich, daß Carbenium-Ionen-Additionen die größte Analogie zu den Säure-katalysierten Hydratisierungen zeigen. Ein Unterschied besteht jedoch darin, daß bei Carbenium-Ionen-Additionen Trimethylethylen deutlich reaktiver ist als Isobuten, während bei den Proton-Additionen die zusätzliche Methylgruppe sogar eine geringe Reaktivitätsabnahme verursacht. Die unterschiedliche Grenzorbital-Wechselwirkung, auf die

			C	D	-		
		œ		¥	X		
	Я	\	40	P۲	67	, È	Lit.
$Ph_2CHCI/ZnCI_2-Et_2O/CH_5CI_3/-70 bzw78°C$	CH3	1.00	33.6	$5.80 \cdot 10^3$	$3.05 \cdot 10^{5}$	$3.31 \cdot 10^2$	diese Arbeit
Tol ₂ CHCl/ZnCl ₂ -Et ₂ O/ CH ₂ Cl ₂ /-70°C	CH3	1.00	9.27	$3.17 \cdot 10^{4a}$	$7.63 \cdot 10^{5}$	$1.15 \cdot 10^3$	diese Arbeit
aq. H ₂ SO4, 25°C	CH_3	1.00^{b}	14.8	$1.56\cdot 10^{5}$	$9.03 \cdot 10^4$	$1.43\cdot10^{4{ m c}}$	32)
Cl_2 , ohne Solvens, $-9^{\circ}C$	C_2H_5	1.00	50	58	$1.1\cdot 10^4$		33)
Br ₃ , CH ₃ OH, 25 °C	CH ₃	1.00	32.3	92.3	$3.21 \cdot 10^{3.34}$		31)
NOCI, CHCI,, 0°C	C_2H_5	1.00	155	47	$3.5 \cdot 10^3$	$1.3\cdot 10^4$	24)
2,4-(NO ₂) ₂ C ₆ H ₃ SCl, CH ₃ CO ₂ H, 30°C	C_2H_5	1.00	2.08	3.39	15.4	254	24)
C ₆ H ₅ SeCl, CH ₂ Cl ₂ , 25°C	CH_3	1.00	0.238	0.772	0.430		35)
Hg(OAc) ₂ , CH ₃ OH	C_2H_5	1.00		1.40	0.25	0.74 ^{d)}	36)
^{a)} 2-Methyl-1-penten (4f). $^{b)}$ In Lit $^{32)}$ später $^{37)}$ verwendeten Wert von 2.38 · 10	wird $k_2 = {}^{-9} 1 \operatorname{mol}^{-1} {}_{1}$	$4.95 \cdot 10^{-8}$ 5^{-1} c) L	1 mol ⁻¹ s ⁻¹ it. ²⁸⁾ . – ^{d)} L	angegeben; hier v .it. ³³⁾ .	/erwenden wir als]	Bezugspunkt den	von den Autoren

der Reaktivitätsunterschied 4d/4g gegenüber Carbenium-Ionen zurückgeführt werden kann (Abschnitt 4.), spielt bei der Addition des "harten" H⁺ keine Rolle. Die ähnlichen relativen Protonierungswärmen von 4d und 4g spiegeln sich daher in den ähnlichen Protonierungsgeschwindigkeiten wider.

Aufgrund der stark unterschiedlichen α - und β -Methyleffekte lassen sich stark verbrückte Übergangszustände bei Carbenium-Ionen-Additionen an Alkene ausschließen. Eine partielle Verbrückung, wie sie durch die stereochemischen Befunde gefordert wird¹⁰, steht jedoch auch mit diesen Ergebnissen in Einklang.

Wir danken Frau *M. Rubow* für ihre Mitarbeit bei einigen Experimenten, der Deutschen Forschungsgemeinschaft und dem Fonds der Chemischen Industrie für finanzielle Unterstützung.

Experimenteller Teil

NMR-Spektren: Jeol JNM-C-60-HL, Jeol JNM-PS-100 und Varian XL 200. – Massenspektren: Varian MAT CH4 und MAT 311A. – HPLC-Analysen: Orlita MK 00 und Knauer HPLC Pumpe 64; Stahlsäulen mit 250 mm Länge und 4.6 mm Innendurchmesser; UV-Detektoren SF 770 Spektroflow (Schoeffel Instr.) und SF 769 Z (Kratos Analyt. Instr.) mit Meßwellenlänge 254 nm.

Da käufliches Diphenylmethylchlorid (1') meist durch Benzophenon verunreinigt ist, erhielt man 1' und 1" durch Einleiten von Chlorwasserstoff in eine Petrolether (Sdp. 40-60°C)-Suspension der entsprechenden Diarylmethanole, die durch Umkristallisieren aus Ethanol gereinigt wurden. Dichlormethan wurde nach 15stdg. Kochen über P₂O₅ destilliert, anschließend 10-15 h über Blei-Natrium-Legierung gekocht und destilliert. Der als Katalysator verwendete Zinkchlorid-Ether-Komplex wurde nach Lit.⁹⁾ hergestellt und als Lösung in Dichlormethan gelagert.

I. Präparative Umsetzungen

1. Propen (4a) und Diphenylmethylchlorid (1'): Die nach Lit.⁸⁾ durchgeführte Umsetzung liefert neben 3a' mitunter geringe Mengen 1,1-Diphenyl-1-buten (8a'). Zu seiner quantitativen Bestimmung bei den Konkurrenzexperimenten wurde es analog dem 1,1-Diphenyl-ethylen³⁸⁾ aus Butansäure-ethylester und Phenylmagnesiumbromid synthetisiert. – ¹H-NMR (CCl₄); $\delta = 1.03$ (t, J = 7 Hz; 3H, CH₃), 2.12 (m; 2H, CH₂), 6.00 (t, J = 7 Hz; 1H, Vinyl-H), 7.13–7.22 (m; 10H, Aromaten-H).

2. Propen (4a) und Bis(4-methylphenyl)methylchlorid (1"): 2.64 g (62.7 mmol) 4a wurden bei -78 °C in eine Lösung von 0.52 g (3.8 mmol) ZnCl₂ und 0.62 ml Ether in 40 ml CH₂Cl₂ kondensiert. Dazu wurden 2.03 g (8.80 mmol) 1" in 10 ml CH₂Cl₂ getropft. Anschließend wurde 3.1 d bei -78 °C belassen, die orangerote Lösung dann auf konz. wäßr. Ammoniak gegossen und durchgeschüttelt. Nach nochmaligem Waschen mit Ammoniak-Lösung wurde die organische Phase über CaCl₂ getrocknet und anschließend das Lösungsmittel abgezogen. Destillation des Rückstandes bei 100–110 °C/10 Pa lieferte 1.96 g eines 0.3:0.4:1-Gemisches von 8a", 10a" und 3a". Durch präp. Mitteldruckchromatographie (Kieselgel $15-25 \mu$ m, Petrolether Sdp. 40–50 °C, 12.5 ml/min, 7 bar) konnten 8a" (10%) ($t_R = 12.5$ min), 10a" (14%) (zwei Stereoisomere, c-10a":t-10a" $\approx 6^{39}$, $t_R = 13.4$ min) und 3a" (34%) ($t_R = 16.7$ min) voneinander getrennt werden.

3-Chlor-1,1-bis(4-methylphenyl)butan (3a"): ¹H-NMR (CCl₄): $\delta = 1.43$ (d, J = 6.7 Hz; 3 H, 4-H), 2.13-2.40 und 2.23 (m und s; 8 H, 2-H, Ar-CH₃), 3.67 (br. sext, $J \approx 6.6$ Hz; 1 H,

3-H), 4.10 (br. t, J = 7.5 Hz; 1H, 1-H), 6.98 (mc; 8H, Aromaten-H). - 1.1-Bis(4-methylphenyl)-1-buten (8a"): ¹H-NMR (CCl₄): $\delta = 1.02$ (t, J = 7.6 Hz; 3H, 4-H), 2.10 (dq, $J_{3,4} = 7.6$, $J_{2,3} = 7.1$ Hz; 2H, 3-H), 2.28 u. 2.35 (2 s; 6H, Ar-CH₃), 5.88 (t, J = 7.1 Hz; 1H, 2-H), 6.80 - 7.10 (m; 8H, Aromaten-H). - trans-1.6-Dimethyl-3-(4-methylphenyl) indan (t-10a"): ¹H-NMR (CDCl₃): $\delta = 1.27$ (d, J = 6.9 Hz; 1-CH₃), 1.38 - 1.75 (m; 2-H), 2.30 und 2.33 (2 s; Ar-CH₃), 2.50 - 2.75 (m; 2-H), 3.30 (mc; 1-H), 4.36 (br. t, $J \approx 7$ Hz; 3-H), 6.75 - 7.18 (m; Aromaten-H). $- \frac{13}{C}$ -NMR (CDCl₃): $\delta = 18.3$ (q; 1-CH₃), 2.04 und 21.0 (2 q; Ar-CH₃), 45.0 (t; C-2), 48.8 (d; C-1), 53.3 (d; C-3) und weitere Signale im Aromatenbereich. - cis-10a": ¹H-NMR (CDCl₃): $\delta = 1.34$ (d, J = 6.79 Hz; 3H, 1-CH₃), 1.60 (mc; 1H, 2-H), 2.33 und 2.35 (2 s; 6H, Ar-CH₃), 2.68 (mc; 1H, 2-H'), 3.13 (m; 1H, 1-H), 4.15 (dd, $J_{1,2} = 7.56$; $J_{1,2} = 10.7$ Hz; 1H, 3-H), 6.77 und 6.94 (AB-System, J = 7.8 Hz; 2H, 4-, 5-H), 7.03 - 7.18 (m; 5H, Aromaten-H). $- \frac{13}{C}$ -NMR (CDCl₃): $\delta = 19.1$ (q; 1-CH₃), 21.0 und 21.4 (2 q; Ar-CH₃), 38.2 (d; C-1), 46.9 (t; C-2), 49.9 (d; C-3), 123.5, 124.3, 127.1, 128.2, 129.1 (5 d, C-4, -5, -7, 3-Phenyl-C₀, C_m), 135.7, 136.1, 142.0, 144.2, 148.9 (5 s; C-6, -8, -9, 3-Phenyl-C_p, C_i).

3. Isobuten (4d) und Bis(4-methylphenyl)methylchlorid (1"): 60 ml absol. CH₂Cl₂ wurden auf $-78 \,^{\circ}$ C gekühlt, 1.80 g (32.1 mmol) 4d einkondensiert und mit einer Lösung von 0.259 g (1.90 mmol) ZnCl₂ in 0.31 ml Ether und 0.62 ml CH₂Cl₂ versetzt. Dazu wurde eine Lösung von 2.10 g (9.10 mmol) 1" in 20 ml CH₂Cl₂ innerhalb von 30 min getropft. Nach weiteren 30 min wurde auf konz. wäßr. Ammoniak gegossen und wie oben aufgearbeitet. Destillation (120-130°C (Bad)/0.13 Pa) ergab 2.49 g (95%) 3-Chlor-3-methyl-1,1-bis(4-methylphenyl)butan (3d") als farblose Flüssigkeit, die beim Aufbewahren im Kühlschrank zu einer farblosen Masse erstarrte. – ¹H-NMR (CCl₄): $\delta = 1.37$ (s; 6H, (CH₃)₂C), 2.23 (s; 6H, Ar-CH₃), 2.53 (d, J = 6 Hz; 2H, 2-H), 4.27 (t, J = 6 Hz; 1H, 1-H), 6.80–7.23 (m; 8H, Aromaten-H). – MS (70 eV): m/z = 288, 286 (1.2%, 3.5%, M⁺), 195 (100), 180 (15), 166.2 (m*, 195 \rightarrow 180), 165 (19), 151.3 (m*, 180 \rightarrow 165).

C19H23Cl (286.9) Ber. C 79.56 H 8.08 Gef. C 79.39 H 8.17

4. 2-Methyl-1-buten (4e) und Diphenylmethylchlorid (1'): Zu einer Lösung von 2.2 g (16 mmol) ZnCl₂ in 2.7 ml Ether und 35 ml CH₂Cl₂ wurden bei -78° C 4.0 g (20 mmol) 1' in 10 ml CH₂Cl₂ gegeben und anschließend innerhalb von 1 h 2.8 g (40 mmol) 4e in 10 ml CH₂Cl₂ zugetropft. Nach 1 h wurde die gelbe Lösung wie oben aufgearbeitet, wobei man 5.1 g einer blaßgelben Flüssigkeit erhielt, deren Destillation 4.8 g (89%) 3-Chlor-3-methyl-1,1-diphenylpentan (3e') als farbloses Öl mit Sdp. 100-112°C (Bad)/0.1 Pa lieferte. - ¹H-NMR (CCl₄): $\delta = 0.92$ (verzerrtes t; 3H, 5-H), 1.27 (s; 3H, 3-CH₃), 1.7 (mc; 2H, 4-H), 2.58 (d, J = 6.0 Hz; 2H, 2-H), 4.33 (t, J = 6.0 Hz; 1H, 1-H), 7.20 (mc; 10H, Aromaten-H). - MS (70 eV): m/z = 236 (M⁺ - HCl, 4%), 207 (13), 168 (15), 167 (100), 165 (25), 152 (17).

C₁₈H₂₁Cl (272.8) Ber. C 79.24 H 7.76 Gef. C 78.90 H 8.15

5. 2-Methyl-1-buten (4e) und Bis(4-methylphenyl)methylchlorid (1"): Eine Lösung von 1.10 g (15.7 mmol) 4e in 50 ml CH₂Cl₂ wurde auf -78 °C gekühlt und mit einer Lösung von 0.556 g (4.08 mmol) ZnCl₂ in 0.66 ml Ether und 1.33 ml CH₂Cl₂ versetzt. Dann wurden innerhalb von 15 min 3.00 g (13.0 mmol) 1" in 10 ml CH₂Cl₂ zugetropft. Nach 3 h wurde die gelbe Lösung wie oben aufgearbeitet. Vakuumdestillation ergab 3.57 g (91%) 3-Chlor-3-methyl-1,1-bis(4-methylphenyl)pentan (3e") als farblose Flüssigkeit mit Sdp. 110-120 °C (Bad)/0.13 Pa. - ¹H-NMR (CCl₄): $\delta = 0.90$ (verzerrtes t, J = 7 Hz; 3H, 5-H), 1.27 (s; 3H, 3-CH₃), 1.58 (mc; 2H, 4-H), 2.23 (s; 6H, Ar-CH₃), 2.53 (d, J = 6 Hz; 2H, 2-H), 4.23 (t, J = 6 Hz; 1H, 1-H), 6.80-7.20 (m; 8H, Aromaten-H).

C20H25Cl (300.9) Ber. C 79.84 H 8.38 Gef. C 80.05 H 8.14

6. 2-Methyl-1-penten (4f) und Bis(4-methylphenyl)methylchlorid (1"): Zu 1.60 g (19.0 mmol) 4f in Gegenwart von 0.52 g (3.8 mmol) ZnCl₂ und 0.62 ml Diethylether in 50 ml CH₂Cl₂

tropfte man bei $-78 \degree C$ 3.00 g (13.0 mmol) 1" in 20 ml CH₂Cl₂. Nach 30 min wurde die gelbe Lösung wie oben aufgearbeitet und lieferte 3.73 g (91%) 3-Chlor-3-methyl-1,1-bis(4-methylphenyl)hexan (**3f**") als farblose, viskose Flüssigkeit mit Sdp. 125-130 °C (Bad)/0.5 Pa. - ¹H-NMR (CCl₄): $\delta = 0.6-1.0$ (m; 3H, 6-H), 1.27 (s; 3H, 3-CH₃), 1.47-1.70 (m; 4H, 4-, 5-H), 2.27 (s; 6H, Ar-CH₃), 2.52 (d, J = 6.0 Hz; 2H, 2-H), 4.22 (t, J = 6.0 Hz; 1H, 1-H), 7.05 (mc; 8H, Aromaten-H).

C21H27Cl (314.9) Ber. C 80.10 H 8.64 Gef. C 80.18 H 8.55

7. 2-Methyl-2-buten (4g) und Diphenylmethylchlorid (1'): Zu 3.01 g (42.9 mmol) 4g in 30 ml CH₂Cl₂ wurden bei -78 °C zuerst eine Lösung von 0.80 g (5.9 mmol) ZnCl₂ in 1.0 ml Diethylether und 2.0 ml CH₂Cl₂ und dann innerhalb von 15 min 4.29 g (21.2 mmol) 1' in 10 ml CH₂Cl₂ getropft. Nach 3 h wurde wie oben aufgearbeitet, wobei 5.41 g eines Rückstands erhalten wurden, der erstarrte. Umkristallisation aus *n*-Pentan lieferte 5.12 g (89%) 3-Chlor-2,3-dimethyl-1,1-diphenylbutan (3g') als farblose Rhomboeder mit Schmp. 56–57 °C. – ¹H-NMR (CCl₄): $\delta = 0.97$ (d, J = 7.3 Hz; 3H, 2-CH₃), 1.35 (s; 3H, 4-H), 1.48 (s; 3H, 3-CH₃), 2.73 (quint, J = 7.1 Hz; 1H, 2-H), 4.27 (d, J = 7.3 Hz; 1H, 1-H), 7.00–7.33 (m; 10H, Aromaten-H). – MS (96 eV): m/z = 274, 272 (0.9%, 3%, M⁺), 168 (42), 167 (100), 166 (13), 165 (33).

C₁₈H₂₁Cl (272.8) Ber. C 79.24 H 7.76 Gef. C 79.28 H 7.70

Versuch mit höherer Konzentration an $ZnCl_2 \cdot Et_2O$: Man versetzt 2.7 g (39 mmol) 4g in 30 ml CH₂Cl₂ bei -78 °C mit einer Lösung von 2.2 g (16 mmol) ZnCl₂ in 2.7 ml Ether und 15.3 ml CH₂Cl₂ und tropft anschließend innerhalb von 20 min 3.5 g (17 mmol) 1' in 10 ml CH₂Cl₂ zu. Gießt man nach 70 min auf konz. wäßr. Ammoniak, erhält man 4.3 g einer farblosen Flüssigkeit, die 3g' und 9g' (3:1) sowie eine Spur 10g' enthält.

8. 2-Methyl-2-buten (4g) und Bis(4-methylphenyl)methylchlorid (1"): Zu einer Lösung von 1.24 g (17.7 mmol) 4g, 0.259 g (1.90 mmol) ZnCl₂ und 0.31 ml Ether in 50 ml CH₂Cl₂ wurden bei -78 °C innerhalb von 10 min 2.08 g (9.01 mmol) 1" in 20 ml CH₂Cl₂ getropft. Nach 30 min wurde die gelbe Lösung auf konz. wäßr. Ammoniak gegossen und wie oben aufgearbeitet. Man erhielt eine viskose, farblose Masse, die nach dem ¹H-NMR-Spektrum aus 3-Chlor-2,3-dimethyl-1,1-bis(4-methylphenyl)butan (3g") und 1,1,2,6-Tetramethyl-3-(4-methylphenyl)indan (10g") im Verhältnis 90: 10 bestand. Umkristallisation aus Petrolether (Sdp. 40-60°C) ergab 1.85 g (68%) 3g" in farblosen Säulen mit Schmp. 62-64°C. - ¹H-NMR (CCl₄): $\delta = 0.93$ (d, J = 7.2 Hz; 3H, 2-CH₃), 1.33 (s; 3H, 4-H), 1.47 (s; 3H, 3-CH₃), 2.27 (s; 6H, Ar-CH₃), 2.68 (quint, J = 7.2 Hz; 1H, 2-H), 4.15 (d, J = 7.2 Hz; 1H, 1-H), 6.83-7.30 (mc; 8H, Aromaten-H). - MS (70 eV): m/z = 302, 300 (1.4%, 4.1%, M⁺), 249 (4), 195 (100), 180 (8.6), 165 (11).

9. 2,3-Dimethyl-2-buten (4h) und Diphenylmethylchlorid (1'): Zu einer Lösung von 3.60 g (42.8 mmol) 4h, 1.95 g (14.3 mmol) ZnCl₂ und 2.3 ml Diethylether in 35 ml CH₂Cl₂ wurden bei -78 °C innerhalb von 20 min 4.07 g (20.1 mmol) 1' in 10 ml CH₂Cl₂ getropft. Nach 2 h 40 min wurde die Reaktion durch Zusatz von wäßr. Ammoniak abgebrochen. Arbeitete man in der oben beschriebenen Weise auf, erhielt man 5.24 g einer blaßgelben Flüssigkeit, die nach ¹H-NMR-Spektrum aus 1,1,2,2-Tetramethyl-3-phenylindan (10h') und 3-Chlor-2,2,3trimethyl-1,1-diphenylbutan (3h') im Verhältnis 65:35 bestand. Destillation bei 90-95 °C (Bad)/0.1 Pa lieferte 4.95 g (93%) einer farblosen Flüssigkeit gleicher Zusammensetzung. Verwendet man nur 40% der oben eingesetzten ZnCl₂/Ether-Menge und bricht die Umsetzung nach 1 h ab, bevor 1' vollständig verbraucht ist, erhält man 10h' und 3h' im Verhältnis 44:66. An diesem Gemisch wurden die spektroskopischen Daten von 3h' bestimmt: ¹H-NMR (CCl₄): $\delta = 1.25$ (s; 6H, 2-CH₃), 1.40 (s; 6H, (CH₃)₂CCl), 4.35 (s; 1 H, 1-H), Aromaten-H sind durch die Signale von 10h' überlagert. 1,1,2,2-Tetramethyl-3-phenylindan (10h') wurde mit 93% Ausbeute erhalten, als das bei -78°C aus 4h und 1' gebildete Produktgemisch vor Auswaschen des Katalysators mit Ammoniak noch 34 h bei 0°C belassen wurde. Farblose Würfel mit Schmp. 62-63°C (aus Pentan). – ¹H-NMR (CCl₄): $\delta = 0.50$ (s; 3 H, 2-CH₃), 1.03 (s; 3 H, 2-CH₃), 1.10 (s; 3 H, 1-CH₃), 1.23 (s; 3 H, 1-CH₃), 4.20 (s; 1 H, 3-H), 6.95-7.20 (m; 9 H, Aromaten-H). – ¹³C-NMR (CDCl₃): $\delta = 20.78, 20.99, 21.57, 26.09$ (4 q; CH₃), 47.51, 50.24 (2 s; C-1, -2), 59.21 (d; C-3), 122.01, 124.80, 125.98, 125.35, 126.80 (5 d; 5 Aromaten-C), 127.59, 130.20 (2 d; Phenyl-C₀, C_m), 139.27, 142.58, 152.46 (3 s; Aromaten-C). – UV (*n*-Pentan): λ_{max} (ε) = 272.5 nm (1100), 265.8 (1200), 259.2 (1000). – MS (96 eV): *m*/*z* = 250 (M⁺, 78%), 235 (100), 207 (27), 193 (49), 157 (23), 105 (26).

C19H22 (250.4) Ber. C 91.14 H 8.86 Gef. C 91.53 H 8.33

10. Methylencyclobutan (4i) und Bis(4-methylphenyl)methylchlorid (1"): Eine Lösung von 3.98 g (17.2 mmol) 1" und 1.77 g (26.0 mmol) 4i in 20 ml CH₂Cl₂ wurde innerhalb von 25 min zu einer auf -78 °C gekühlten Lösung von 278 mg (2.04 mmol) ZnCl₂ in 0.33 ml Ether und 67 ml CH₂Cl₂ getropft. Nach 30 min wurde, wie oben beschrieben, aufgearbeitet. Man erhielt eine farblose trübe Flüssigkeit, die in Petrolether (Sdp. 40 – 50 °C) aufgenommen, über Kieselgel 60 filtriert und anschließend aus Ethanol umkristallisiert wurde: 4.49 g (87%) 1-[2,2-Bis(4-methylphenyl)ethyl]-1-chlorcyclobutan (3i") in farblosen gestreckten Prismen mit Schmp. 40-41 °C. – ¹H-NMR (CDCl₃): $\delta = 1.50-1.70$ (m; 1H, Cyclobutan-3-H), 1.90-2.24 (m; 5H, Cyclobutan-2,3,4-H), 2.28 (s; 6H, Ar-CH₃), 2.59 (br. d, J = 7.0 Hz; 2H, CH₂CH), 4.35 (t, J = 7.0 Hz; 1H, CHAr₂), 7.07, 7.17 (AA'BB'-System, J = 7.9 Hz; 8H, Aromaten-H). – ¹³C-NMR (CDCl₃): $\delta = 16.11$ (t; Ring-C-3), 20.96 (q; CH₃), 39.10 (t; Ring-C-2,4), 47.14 (d; CHAr₂), 48.11 (t; Ethyl-CH₂), 73.50 (s; Ring-C-1), 127.77, 129.04 (2 d; Aryl-CH), 135.50 (s; Aryl-C-4), 142.00 (s; Aryl-C-1).

C20H23Cl (298.9) Ber. C 80.38 H 7.76 Gef. C 80.45 H 7.77

11. Methylencyclopentan (4j) und Bis(4-methylphenyl)methylchlorid (1"): Zu einer Lösung von 522 mg (6.36 mmol) 4j, 278 mg (2.04 mmol) ZnCl₂ und 0.33 ml Ether in 50 ml CH₂Cl₂ wurden bei -78 °C innerhalb von 30 min 1.03 g (4.46 mmol) 1" in 20 ml CH₂Cl₂ getropft. Nach 15 min wurde die gelbe Lösung wie oben aufgearbeitet. Umkristallisation des Rohprodukts aus Petrolether (Sdp. 40-45 °C) lieferte 1.15 g (82%) 1-[2,2-Bis(4-methylphenyl)ethyl]-1-chlorcyclopentan (3j") in farblosen Nadeln mit Schmp. 40-42 °C. - ¹H-NMR (CCl₄): $\delta = 1.10-2.00$ (m; 8H, Ring-H), 2.27 (s; 6H, Ar-CH₃), 2.58 (d, J = 6.5 Hz; 2H, CH₂CH), 4.45 (t, J = 6.5 Hz; 1H, CHAr₂), 6.77-7.23 (m; 8H, Aromaten-H). - MS (70 eV): m/z = 314, 312 (1%, 3%, M⁺), 196 (17), 195 (100), 180 (10), 165 (12), 166.2 (m*, 195 \rightarrow 180), 151.3 (m*, 180 \rightarrow 165).

Beim Umkristallisationsversuch aus Ethanol oder Filtrieren einer Petrolether-Lösung über Kieselgel 60 entsteht aus **3**j" das HCl-Eliminierungsprodukt 2-(1-Cyclopenten-1-yl)-1,1-bis(4-methylphenyl)ethan als farblose Flüssigkeit. (¹H-NMR (CCl₄): $\delta = 1.43-2.33$ (br. m; Ring-H), 2.27 (s; Ar-CH₃), 2.73 (br. d, $J \approx 8$ Hz; 1-H), 4.03 (t, $J \approx 8$ Hz; CHAr₂), 5.17 (br. s; Vinyl-H), 7.00 (mc; Aromaten-H).)

12. Methylencyclohexan (4k) und Bis(4-methylphenyl)methylchlorid (1"): Zu einer auf -78 °C gekühlten Lösung von 2.61 g (27.1 mmol) 4k in 50 ml CH₂Cl₂ wurden 278 mg (2.04 mmol) ZnCl₂ in 0.33 ml Ether und 0.67 ml CH₂Cl₂ gegeben; dann wurden innerhalb von 15 min 2.44 g (10.6 mmol) 1" in 30 ml CH₂Cl₂ zugetropft. Nach 1 h wurde die intensiv gelbe Lösung in gewohnter Weise aufgearbeitet. Da beim Versuch der Vakuumdestillation (1 Pa) Zersetzung erfolgte, wurde das ölige Rohprodukt in Petrolether (Sdp. 40-60 °C) gelöst und über eine 10 × 1.5-cm-Säule mit Kieselgel 60 filtriert. Nach Abziehen des Lö-

sungsmittels wurden 3.00 g (87%) analysenreines 1-[2,2-Bis(4-methylphenyl)ethyl]-1-chlor $cyclohexan (3k") als farblose viskose Flüssigkeit erhalten. – ¹H-NMR (CCl₄): <math>\delta =$ 0.83–2.00 (m; 10H, Ring-H), 2.25 (s; 6H, Ar-CH₃), 2.50 (d, J = 6.0 Hz; 2H, CH₂CH), 4.40 (t, J = 6.0 Hz; 1H, CHAr₂), 6.77–7.23 (m; 8H, Aromaten-H). – MS (70 eV): m/z = 328, 326 (0.02%, 0.07%, M⁺), 290 (21), 234 (11), 208 (13), 198 (26), 195 (100), 180 (11), 166.2 (m*, 195–180).

C22H27Cl (326.9) Ber. C 80.83 H 8.33 Gef. C 80.98 H 8.41

13. 1-Methyl-1-cyclohexen (41) und Bis(4-methylphenyl)methylchlorid (1"): Zu einer auf -78 °C gekühlten Lösung von 1.12 g (11.6 mmol) 4l, 278 mg (2.04 mmol) ZnCl₂ und 0.33 ml Ether in 40 ml CH₂Cl₂ wurden innerhalb von 15 min 2.00 g (8.67 mmol) 1" in 10 ml CH₂Cl₂ getropft. Nach 7 h wurde die braungelbe Lösung auf konz. wäßr. Ammoniak gegossen und wie oben aufgearbeitet. Das dabei erhaltene Öl besteht nach ¹H-NMR-Analyse aus 3l" und Spuren einer Verbindung mit ¹H-NMR-Signalen (CCl₄) bei $\delta = 4.15$ (d) und 1.10 (s), die mit dem Indan 10l" vereinbar wären. Umkristallisation aus Petrolether (Sdp. 40-50 °C) ergab 2.39 g (84%) 2-[Bis(4-methylphenyl)methyl]-1-chlor-1-methylcyclohexan (3l") in garbenförmigen farblosen Kristallaggregaten mit Schmp. 90-91 °C. Die Konfiguration von 31 ist unbekannt. - ¹H-NMR (CCl₄): $\delta = 1.10-2.27$ (m; 8H, Ring-H), 1.30 (s; 3H, 1-CH₃), 2.28 (s; 6H, Ar-CH₃), 2.67 (mc; 1H, 2-H), 4.47 (d, $J \approx 6$ Hz; 1H, Ar₂CH), 6.87-7.27 (m; Aromaten-H).

C₂₂H₂₇Cl (326.9) Ber. C 80.83 H 8.33 Gef. C 80.93 H 8.05

II. Irreversibilität der Additionsreaktionen

1. Kinetische Stabilität der Additionsprodukte 3: Zu einer Lösung von 0.726 g (2.81 mmol) 3d', 0.30 g (2.0 mmol) ZnCl₂ und 0.3 ml Ether in 10 ml CH₂Cl₂ wurden bei $-78 \,^{\circ}\text{C}$ 1.000 g (14.3 mmol) 4g in 10 ml CH₂Cl₂ getropft. Nach 6 h wurde auf konz. wäßr. Ammoniak gegossen. Nach Abziehen des Lösungsmittels blieben 0.70 g einer farblosen Flüssigkeit zurück, die nach dem ¹H-NMR-Spektrum aus unverändertem 3d' bestand.

In gleicher Weise wurden 0.169 g (0.620 mmol) 3g' 5h mit 0.500 g 4d in Gegenwart von 0.30 g $2nCl_2$ und 0.3 ml Ether behandelt, ohne daß eine Veränderung eintrat.

2. Kreuzungsexperimente

a) Darstellung der Alkene 4n und 40: 12.0 g (46.4 mmol) 3d' wurden in 50 ml tert-Butylalkohol gelöst, mit 19.8 g (176 mmol) Kalium-tert-butoxid versetzt und 5 h auf 110°C erhitzt. Die Mischung wurde auf Wasser gegossen, mit Dichlormethan extrahiert, der Extrakt über CaCl₂ getrocknet und das Lösungsmittel abgezogen, wobei man 9.4 g Rückstand erhielt. Destillation bei 85–90°C (Bad)/0.1 Pa ergab 9.14 g (89%) 2-Methyl-4,4-diphenyl-1buten (4n): ¹H-NMR (CCl₄): $\delta = 1.67$ (br. s; 3H, 2-CH₃), 2.73 (br. d, J = 8.0 Hz; 2H, 3-H), 4.15 (t, J = 8.0 Hz; 1H, 4-H), 4.67 (mc; 2H, 1-H), 7.20 (s; Aromaten-H). – IR (Film): v =3060, 3020 cm⁻¹ (Aromaten-CH), 2960, 2920, 2880, 2840 (CH), 1640 (C=C), 1590, 1580, 1485 (Aromaten-Gerüst), 1440, 1365, 1075, 1020, 880 (=CH₂, out of plane), 780, 740, 730, 690 (out of plane). – MS (96 eV): m/z = 222 (1%, M⁺), 207 (0.5), 168 (18), 167 (100), 166 (7), 165 (19), 152 (9), 128 (2), 115 (2).

C17H18 (222.3) Ber. C 91.84 H 8.16 Gef. C 91.93 H 7.97

3-Chlor-3-methyl-1-(4-methylphenyl)-1-phenylbutan (farblose Nadeln mit Schmp. 11 °C, aus Petrolether), das analog **3d'** aus α -(4-Methylphenyl)benzylchlorid (1"'') und Isobuten erhalten wurde, lieferte beim Behandeln mit Kalium-tert-butoxid in der oben beschriebenen Weise 81% 2-Methyl-4-(4-methylphenyl)-4-phenyl-1-buten (40) als farblose Flüssigkeit mit Sdp. 68-78 °C (Bad)/0.1 Pa. - ¹H-NMR (CCl₄): $\delta = 1.65$ (s; 3 H, 2-CH₃), 2.23 (s; 3 H, Ar-CH₃), 2.72 (d, J = 8.1 Hz; 2 H, 3-H), 4.10 (t, J = 8.1 Hz; 1 H, 4-H), 4.60-4.67 (m; 2 H, 1-H), 7.03 und 7.15 (2 s; 9 H, Aromaten-H).

C18H20 (236.4) Ber. C 91.47 H 8.53 Gef. C 91.54 H 8.40

b) Umsetzung von 2-Methyl-4-(4-methylphenyl)-4-phenyl-1-buten (40) mit Diphenylmethylchlorid (1'): 1.00 g (4.23 mmol) 40 wurden in 20 ml CH₂Cl₂ bei -78 °C mit einer Lösung von 0.60 g (4.4 mmol) ZnCl₂ in 0.7 ml Ether und 1.4 ml Dichlormethan versetzt. Dazu wurden innerhalb 10 min 0.857 g (4.23 mmol) 1' in 10 ml CH₂Cl₂ getropft. Nach 48 h wurde auf konz. wäßr. Ammoniak gegossen und das Lösungsmittel abgezogen. Es wurden 1.78 g einer sehr viskosen Flüssigkeit erhalten, die aus 3-Chlor-3-methyl-1-(4-methylphenyl)-1,5,5triphenylpentan (3n) bestand. - ¹H-NMR (CCl₄): $\delta = 1.08$ (s; 3H, 3-CH₃), 2.27 (s; 3H, Ar-CH₃), 2.50 (d, J = 6 Hz; 4H, 2-, 4-H), 4.27 (br. t, J = 6 Hz; 2H, 1-, 5-H), 6.97-7.20 (m; 19H, Aromaten-H). - MS (70 eV): m/z = 440, 438 (3%, 9%, M⁺), 403 (1), 402 (3), 236 (2), 235 (2), 221 (3), 181 (PhTolCH⁺, 100), 167 (Ph₂CH⁺, 42), 165 (28).

In gleicher Weise wurde **4n** mit 1' zu **3p** und **40** mit 1''' zu **3q** umgesetzt: *3-Chlor-3-methyl-1,1,5,5-tetraphenylpentan* (**3p**): Farblose meißelförmige Kristalle mit Schmp. 77–79°C (*n*-Pentan/Ether). – ¹H-NMR (CCl₄): $\delta = 1.10$ (s; 3H, 3-CH₃), 2.52 (d, J = 6.2 Hz; 4H, 2-, 4-H), 4.30 (t, J = 6.2 Hz; 2H, 1-, 5-H), 7.03–7.25 (m; 20H, Aromaten-H). – MS (70 eV): m/z = 426, 424 (4%, 12%, M⁺), 389 (4), 388 (13), 222 (2), 221 (6), 208 (7), 207 (12), 180 (1.5), 167 (Ph₂CH⁺, 100).

C₃₀H₂₉Cl (425.0) Ber. C 84.78 H 6.88 Gef. C 84.67 H 6.70

3-Chlor-3-methyl-1,5-bis (4-methylphenyl)-1,5-diphenylpentan (3q): Farbloses Öl. – ¹H-NMR (CCl₄): $\delta = 1.08$ (s; 3H, 3-CH₃), 2.25 (s; 6H, Ar-CH₃), 2.48 (d, $J \approx 6$ Hz; 4H, 2-, 4-H), 4.23 (br. t, $J \approx 6$ Hz; 2H, 1-, 5-H), 7.00–7.25 (m; 18H, Aromaten-H). – MS (70 eV): m/z = 454, 452 (0.3%, 0.7%, M⁺), 416 (0.6), 288 (0.3), 274 (0.7), 272 (2.4), 270 (1), 236 (13), 226 (18), 221 (11), 196 (13), 181 (PhTolCH⁺, 100), 166 (21), 165 (23).

III. Konkurrenzexperimente

In einem 100-ml-Rundkolben wurden etwa 0.40 mmol 1 sowie zwei Olefine in solcher Menge eingewogen, daß die Additionsprodukte in relativen Mengen von 0.1 bis 10 entstanden. Es wurde mit 50 ml absol. CH_2Cl_2 aufgefüllt, der Kolben auf -70 bzw. -78 °C gekühlt und nach Thermostatisierung unter Rühren eine Lösung von 1.90 mmol ZnCl₂ in 0.31 ml absol. Ether und 0.62 ml absol. CH_2Cl_2 zugesetzt. Nach Beendigung der Umsetzung wurde die Lösung auf ca. 50 ml konz. wäßr. Ammoniak gegossen und durchgeschüttelt. Die organische Phase wurde abgetrennt, über CaCl₂ getrocknet, eingeengt und durch HPLC (Tab. 5) analysiert. In einigen Fällen wurde das Diarylmethylchlorid 1 zu einer thermostatisierten Lösung der Olefine und des Katalysators gegeben, was auf die Konkurrenzkonstante keinen Einfluß hatte.

Tab. 6 zeigt die Einwaagen der Reaktanten, die aus Eichkurven ermittelten Produktverhältnisse sowie die nach Gl. (1) resultierenden Konkurrenzkonstanten.

IV. Limonen (4r) und Bis(4-methylphenyl)methylchlorid (1")

Wie für die anderen Additionen beschrieben, erhielt man durch Umsetzung von 1.90 g (14.0 mmol) 4r mit 2.07 g (8.97 mmol) 1" in Gegenwart von 0.28 g ZnCl₂ und 0.3 ml Ether in 50 ml CH₂Cl₂ bei -78 °C ein Gemisch der 1:1-Produkte 3ra und 3rb sowie mehrerer stereoisomerer 2:1-Produkte. Durch präparative Mitteldruckchromatographie (LiChroprep

Si 60, $15-25 \mu m$; Petrolether (40-60°C)/Ether (100:1, v:v) ließen sich 3ra und 3rb abtrennen. Vermutlich handelt es sich bei 3ra um ein Diastereomerengemisch, während das kristallisierte 3rb sterisch einheitlich sein dürfte.

Reaktanten	Stationāre Phase	Mobile Phase		Fluβ (ml/min)	Retentionszeiten (min)
<u>1'+ 4a/4m</u>	Nucleosil 5 NO ₂	Isooctan/Ethe	r=99/1	1.52	8a'(3.2), <u>3a</u> '(5.2), <u>11</u> '(6.1)
<u>1'+ 4a/4c</u>	Nucleosil 5 C,.	CH ₃ CN/H ₂ O	=82/18	1.40	<u>3a</u> '(5.4), <u>3c</u> '(5.8), <u>8a</u> '(7.3)
<u>1'+ 40/4m</u>	Nucleosil 5 C _{ie}	CH₃OH/H₂O	-87/13	1.00	<u>36</u> '(6.5), <u>86</u> '(8.0), <u>11</u> '(8.6)
<u>1'+ 4c/4m</u>	Nucleosil 5 C _{ie}	CH,OH/H20	=88/12	1.21	<u>3c</u> '(5.9), <u>8b</u> '(7.2), <u>11</u> '(7.7)
<u>1'+ 4c/4f</u>	LiChrosorb RP-8	CH,OH/H20	=85/15	1.06	<u>3c</u> '(6.1), <u>8b</u> '(7.1), <u>3f</u> '(8.3)
<u>1'+ 4d/4f</u>	Nucleosil 5 NO2	Isooctan/Ethe	r- 99/1	1.32	<u>3f</u> '(5.9), <u>3d</u> '(6.4)
<u>1'+ 4d/4m</u>	Nucleosil 5 NO ₂	Isooctan/Ether	r=99/1	1.52	<u>3d'(5.3),11'(6.4)</u>
<u>1'+ 4f/4m</u>	LiChrosorb RP-8	CH,OH/H20	-85/15	1.75	11'(6.7),3f(8.6)
<u>1'+ 4f/4g</u>	Nucleosil 5 C ₁₀	CH3OH/H2O	-90/ 10	0.85	<u>9'(6.4),3</u> <u>8'</u> (7.1), <u>3f</u> '(9.0), <u>10g</u> '(9.5)
<u>1'+ 4f/4h</u>	Nucleosil 5 NO _z	Isooctan/Ether	r=99/1	1.40	<u>10h</u> '(3.0), <u>4f</u> '(4.5)
<u>1'+ 4g/4n</u>	Nucleosil 5 C ₁₀	CH30H/H20	- 90/10	1.00	<u>9</u> '(6.3), <u>3g</u> '(7.1), <u>3h</u> '(7.9),
					<u>10g</u> '(8.5), <u>10h</u> '(11.8)
<u>''+ 4a/4c</u>	Nucleosil 5 C _i .	CH , CN/H 20	-82/18	1.40	<u>3a</u> ''(8.4), <u>4c</u> ''(9.2), <u>10a</u> ''(11.3), <u>8a</u> ''(12.3), <u>8c</u> ''(13.1)
<u>1''+ 4b/4m</u>	Nucleosil 5 C ₁₈	CH 30H/H 20	-98/2	1.50	<u>36</u> ''(3.9), <u>11</u> ''(4.5)
<u>1''+ 4c/4m</u>	Nucleosil 5 NO ₂	Iscoctan/E	ther≃98/2	1.24	<u>3c''(5.0),11''(5.6)</u>
1''+ <u>4e/4m</u>	Nucleosil 5 C ₁ ,	CH 30H/H 30	-96/4	1.50	<u>3e''(5.4),11</u> ''(5.8)
<u>1''+ 4f/4m</u>	Nucleosil 5 NO ₂	Isooctan/E	ther=98/2	1.54	<u>3f</u> ''(3.5), <u>11</u> ''(4.1)
<u>1''+ 4g/4f</u>	Nucleosil 5 C _{1a}	CH 30H/H 20	-96 /4	1.50	<u>3</u> g''(4.5), <u>3f</u> ''(5.1),
					<u>10g</u> ''(5.6)
<u>1''+ 41/4f</u>	Nucleosil 5 C ₁₈	СН "ОН/ Н ₂ О	~9 2/8	1.50	<u>31</u> ''(7.1), <u>3f</u> ''(7.9)
<u>1''+ 41/4s</u> a)	Nucleosil 5 C ₁₀	CH 30H/H 20	-96 /4	1.50	<u>39</u> ''(4.2), <u>31</u> ''(5.2)
<u>1''+ 4k/4m</u>	Nucleosil 5 NO ₂	Isooctan/E	ther-98/2	1.48	<u>3k</u> ''(3.7), <u>11</u> ''(4.1)
1''+ <u>41/4r</u>	Nucleosil 5 NO ₂	Isooctan/E	ther=98/2	1.25	<u>3f''(4.7),31</u> ''(5.3)
<u>1''+ 41/4m</u>	Nucleosil 5 NO ₂	Isooctan/E	ther-98/2	1.55	<u>31</u> ''(3.8), <u>3m</u> ''(4.1)

Tab. 5. Chromatographische Trennungen der bei den Konkurrenzexperimenten anfallenden Produktgemische

^{a)} 4s =Allyltrimethylsilan, das bei der Umsetzung mit 1" 4,4-Bis(4-methylphenyl)-1-buten (3s") ergibt¹⁶.

4-[1-Chlor-1-methyl-3,3-bis(4-methylphenyl)propyl]-1-methyl-1-cyclohexen (3ra): Farbloses Öl. – ¹H-NMR (CCl₄): $\delta = 1.23$ (s; 3H, H₃C-CCl), 1.37–2.23 (m; Cyclohexen-4-, 5-, 6-H), 1.60 (br. s; 1-CH₃), 2.27 (s; 6H, Ar-CH₃), 2.40 (d, $J \approx 6$ Hz; 2H, CH₂CCl), 4.27 (t,

$J \approx 6$ Hz; 1 H, CHAr₂), 5.27 (mc; 1 H, Vinyl-H), 7.00 (mc; 8 H, Aromaten-H). – MS (70 eV): $m/z = 368, 366 (2.5\%, 7\%, M^+), 331 (3), 235 (11), 208 (7), 195 (100).$

Temperatur	Ar ₂ CHC1	Alken 1	Alken 2	[Alken 1]	Produktverhältnis	k, /k,
(°C)	(mg)	(mg)	(mg)	[Alken 2]	(molar)	
-78	1' (89)	4m (92)	4a (3020)	0.0136	8a':3a':11' = 0.042 : 0.259 : 1	
	- (79)	(74)	(2460)	0.0134	0.041 : 0.250 : 1	322
	(98)	(89)	(4480)	0.0089	0.060 : 0.417 : 1	290
-70	<u>1</u> ' (98.0)	<u>4c</u> (120.1)	<u>4a</u> (1330)	0.0677	<u>3a':3c':8a'</u> = 3.23 : 10.5 : 1	39 .9
	(102.5)	(48.1)	(1620)	0.0223	3.23 : 2.67 : 1	32.5
	(102,6)	(72.1)	(2830)	0.0191	3.23 : 2.76 : 1	37.0
-78	<u>1</u> ' (98)	<u>4西</u> (106)	<u>4b</u> (538)	0.117	<u>3b</u> ': <u>8b</u> ': <u>11</u> ' = 0.572 : 0.051 : 1	15.7
	(100)	(310)	(1706)	0.108	0.611 : 0.050 : 1	14.6
	(101)	(204)	(1684)	0.072	0.994 : 0.080 : 1	13.6
	(85)	(79)	(1160)	0 .0 41	1.73 : 0.146 : 1	14.3
-78	1' (103)	4m (172)	<u>4c</u> (528)	0.194	<u>3c':8b':11' =</u> 0.476 : 0.062 : 1	10.5
	(94)	(98)	(386)	0.151	0.628 : 0.085 : 1	10.6
-78	<u>1</u> ' (75)	4£ (71)	<u>40</u> (2223)	0.021	<u> 36':86':31'</u> = 0.257 : 0.020 : 1	207
	- (79)	(78)	(2703)	0.019	0.285 : 0.020 : 1	206
-78	<u>1</u> ' (95)	<u>4f</u> (352)	<u>4d</u> (285)	0.823	<u>3f</u> ': <u>3d'</u> - 1 : 1.05	1.16
-78	1' (99)	<u>4a</u> (239)	<u>4m</u> (3925)	0.102	<u>3a</u> ': <u>11</u> ' - 1.70 : 1	17.2
	(101)	(230)	(2521)	0.153	2.49 : 1	17.0
-78	<u>1</u> ' (103)	<u>4f</u> (104)	<u>4m</u> (1543)	0.075	3t':11' = 1.42:1	21.4
	(104)	(88)	(1883)	0.052	0.980 : 1	21.3
-78	<u>1</u> ' (90)	<u>색</u> B (59)	<u>41</u> (933)	0.076	9':3g':3f':10g' = 0.162 : 2.007 : 1 : 0.519	44.5
	(103)	(48)	(1243)	0 .0 46	0.094 : 1.245 : 1 : 0.362	49.2
	(93)	(48)	(1544)	0.037	0.056 : 0.805 : 1 : 0.245	36.3
-78	<u>1</u> ' (145)	<u>4h</u> (98)	<u>41</u> (2059)	0.048	<u>10h': 4f' = 0.995 : 1</u>	24.8
	(156)	(97)	(1880)	0.052	1.030 : 1	24.2
	(152)	(99)	(1680)	0.059	1.100 : 1	22,5
-78	<u>1</u> ' (194)	<u>чв</u> (109)	<u>чп</u> (769)	0.17	<u>(9'+3g'+10g'):(3h'+10h') =</u> 0.317	1.94
	(190)	(126)	(669)	0.23	0.416	1,92
	(204)	(203)	(514)	0.47	0.874	1.92
-70	1''(100.0)	<u>4c</u> (236)	<u>4a</u> (1450)	0,12	<u>3c'':(3a''+10a''+8a'') - 1</u> :0.99	8.47
	(101.0)	(118)	(1100)	0.080	1 : 1.45	8.91
	(104.0)	(47.3)	(1120)	0.032	1 : 3.29	10.18
	(103.0)	(47.3)	(2080)	0.017	1 : 6.32	9.59

Tab. 6. Bestimmung der relativen Alken-Reaktivitäten

Temperatur	Ar,CHC1	Alken 1	Alken 2	[Alken 1]	Produktverhältnis	k./k
(°C)	(mg)	(mg)	(mg)	[Alken 2]	(molar)	A1/A2
-70	1''(101)	4m (95)	4b (3119)	0.0182	<u>35'':11'' = 0.264 : 1</u>	255
	- (102)	(106)	(3682)	0.0172	0.280 : 1	228
	(113)	(74)	(5440)	0.0081	0.715 : 1	210
	(120)	(75)	(6325)	0.0071	0.871 • 1	200
	(100)	(84)	(7234)	0.0069	0.824 - 1	200
	(109)	(85)	(7062)	0.006#	0.981 • 1	196
	(102)	(81)	(9362)	0.0052	1 180 - 1	100
	(100)	(155)	(11432)	0.0092	0.78/1 - 1	187
	(100)	(199)	(114)27	0.0001	0.704 - 1	171
-70	<u>1</u> ''(100)	<u>4m</u> (81)	<u>чс</u> (480)	0.101	<u>3</u> c'': <u>11</u> '' = 0.107 : 1	124
	(100)	(64)	(658)	0.058	0.194 : 1	127
	(102)	(75)	(1242)	0.036	0,291 : 1	125
	(105)	(76)	(1315)	0.034	0.314 : 1	121
-70	1''(100)	<u>4j</u> (59)	4 <u>s</u> (118)	0.70	<u>31</u> '': <u>38</u> '' - 9.33 : 1	19.0
	- (99)	(70)	(197)	0.49	6,96 = 1	18.3
	(103)	(69)	(305)	0.31	4.51 : 1	18.5
	(102)	(66)	(601)	0.15	2.20 : 1	17.9
	(100)	(70)	(1201)	0.081	1.09 ; 1	15-5
	(100)	(63)	(900)	0.097	1.30 : 1	15.9
	(101)	(66)	(1407)	0.065	0.830 : 1	14.5
-70	<u>1</u> ''(106)	<u>4k</u> (75)	4 <u>m</u> (1689)	0.043	<u>3k</u> '': <u>11</u> '' = 1.83 : 1	52.7
	(107)	(70)	(2502)	0.027	1.19 : 1	53.1
	(107)	(67)	(2041)	0.032	1.34 : 1	52.3
	(101)	(68)	(3224)	0.021	0.908 : 1	51.9
-70	1''(104)	4f (51)	41 (67)	0.87	31'':31'' = 1 : 0.649	2 04
,.	(102)	(175)	(71)	2.81	1 : 0.186	2.00
	(104)	(339)	(68)	5.70	1 : 0.0882	2.05
	(10)	(357)	(00)			2.05
-70	<u>1</u> ''(104)	<u>4e</u> (52)	<u>4m</u> (2166)	0.032	<u>3e'':11''</u> = 0.566 : 1	19.7
	(101)	(56)	(1803)	0.042	0.730 : 1	19.7
	(104)	(52)	(1336)	0.052	0.915 : 1	20.5
	(100)	(73)	(1762)	0.056	0.985 : 1	19.7
-70	111(103)	4f (79)	4m (1448)	0.061	3f'':11'' = 1.470 - 1	28.1
	(101)	(68)	(1934)	0.039	0.957 = 1	20.1
	(100)	(67)	(2431)	0.031	0.741 + 1	20.1
	(110)	(73)	(2068)	0.027	0 652 - 1	27.2
	(110)	(15)	(5000)	01021		£{•2
-70	<u>1</u> ''(100)	4g (45)	<u>4f</u> (4008)	0.014	3g'':31'':10g'' = 0.212 : 1 : 0.0	96 24.8
	(100)	(42)	(3013)	0.017	0.264 : 1 : 0.12	21 25.6
	(105)	(54)	(2002)	0.032	0.457 : 1 : 0.2	21 23.8
	(105)	(51)	(1365)	0.045	0.572 : 1 : 0.28	32 22.3

Temperatur	Ar 2CHCl	Alke	n 1	Alke	n 2	[Alken 1]	Produktverhältnis		k1/k2
(°C)	(mg)	(mg)	(mg	>	[Alken 2]	(molar)		
-70	<u>1</u> ''(100)	<u>41</u>	(49)	<u>4f</u>	(63)	0.96	<u>31</u> '': <u>3f</u> ''	= 1.600 : 1	1.84
	(102)		(52)		(120)	0.54		0.925 : 1	1.86
	(103)		(59)		(182)	0.40		0.716 : 1	1.89
	(106)		(59)		(240)	0.30		0.534 : 1	1.84
-70	<u>1</u> ''(104)	<u>41</u>	(76)	4 <u>m</u>	(451)	0.165	<u>31</u> '': <u>11</u> ''	- 1.81 : 1	13.4
	(100)		(77)		(815)	0.093		1.05 : 1	13.1
	(111)		(70)		(702)	0.098		1.11 : 1	13.8
	(106)		(68)		(1254)	0.053		0.652 : 1	14.0

Tab. 6 (Fortsetzung)

2-[Bis(4-methylphenyl)methyl]-1-chlor-1-methyl-4-(1-methylethenyl)cyclohexan (3 rb): Farblose Nadeln mit Schmp. 106–108 °C (aus Petrolether). – ¹H-NMR (CCl₄): δ = 1.18 (s; 3 H, 1-CH₃), 1.30 (s; 3 H, H₃C-C=), 1.43–2.10 (m; 7 H, 3-, 4-, 5-, 6-H), 2.23 (s; 6 H, Ar-CH₃), 3.03 (br. d, J = 10 Hz; 1 H, 2-H), 3.87 (d, J = 10 Hz; 1 H, Ar₂CH), 4.48 (br. s; 2 H, =CH₂), 6.87–7.27 (m; 8 H, Aromaten-H). – MS (70 eV): m/z = 368, 366 (3%, 8%, M⁺), 330 (1.4), 315 (0.3), 230 (0.6), 195 (100).

Zur Bestimmung der intramolekularen Konkurrenzkonstante bei -70 °C wurde 1" in 50 ml CH₂Cl₂ mit mindestens 10 Äquivalenten 4r umgesetzt, so daß ausschließlich die 1:1-Additionsprodukte 3ra und 3rb gebildet wurden. Die Zusammensetzung wurde durch HPLC-Analyse bestimmt: Nucleosil 5 NO₂, Isooctan/Ether (98/2), 1.49 ml/min, Retentionszeit 3ra = 3.6 min, 3rb = 4.0 min.

1" (mmol)	4r (mmol)	Katalysator (mmol)	3ra/3rb
0.433	4.29	$ZnCl_2 \cdot 1.57 Et_2O(2.0)$	2.26
0.442	9.34	(2.0)	2.42
0.438	4.34	(2.0)	2.27
0.433	4.30	(10)	2.32
0.433	4.29	(16)	2.27
0.442	4.28	SnCl ₄ (0.09)	2.31
0.442	4.31	(1.8)	2.85
0.438	4.31	(7.2)	3.00

CAS-Registry-Nummern

1': 90-99-3 / 1": 13389-70-3 / 1"': 779-14-6 / 3a': 36317-61-0 / 3a'': 102434-76-4 / (R^*, R^*)-3b': 102434-92-4 / (R^*, R^*)-3b'': 102434-94-6 / (R^*, S^*)-3c'': 102434-95-7 / 3d'': 84803-28-1 / 3d'': 102434-78-6 / 3e': 102434-79-7 / 3e'': 102434-88-0 / 3f': 96761-10-3 / 3f'': 102434-81-1 / 3g': 102434-82-2 / 3g'': 102434-83-3 / 3h': 102434-88-0 / 3f': 96761-10-3 / 3f'': 102434-81-1 / 3g': 102434-82-2 / 3g'': 102434-83-3 / 3h': 102434-85-5 3i'': 102434-86-6 / 3j'': 102434-87-7 / 3k'': 102434-89-9 / 3f'': 102492-28-4 / 3n: 102434-88-0 / 3p: 102434-99-1 / 3g: 102436-00-7 / 3ra: 102435-01-8 / 3rb: 102435-02-9 / 3s'': 102435-03-0 / 4a: 115-07-1 / 4b: 590-18-1 / 4c: 624-64-6 / 4d: 115-11-7 / 4e: 563-46-2 / 4f: 763-29-1 / 4g: 513-35-9 / 4h: 563-79-1 / 4i: 1120-56-5 / 4j: 1528-30-9 / 4k: 1192-37-6 / 4l: 591-49-1 / 4m: 498-66-8 / 4n: 33925-52-9 / 4o: 102434-97-9 / 4r: 138-86-3 / 4s: 762-72-1 / 8a': 1726-14-3 / 8a'': 102434-74-2 / 8b': 66129-95-1 / 8b'': 102492-29-5 / 9g': 42842-40-0 / 9j'': 102434-88-8 / cis-10a'': 102434-77-5 / trans-10a'': 102434-90-2 / 11' (Isomeres 1): 102435-03-0 / 11'' (Isomeres 1): 102434-90-2 / 11' (Isomeres 2): 102435-04-1 / 11'' (Isomeres 1): 102434-90-2 / 11' (Isomeres 2): 102435-04-1 / 11'' (Isomeres 1): 102434-90-2 / 11' (Isomeres 2): 102435-04-1 / 11'' (Isomeres 1): 102434-90-2 / 11' (Isomeres 2): 102435-04-1 / 11'' (Isomeres 1): 102434-90-2 / 11' (Isomeres 2): 102435-04-1 / 11'' (Isomeres 1): 102434-90-2 / 11' (Isomeres 2): 102435-04-1 / 11'' (Isomeres 1): 102434-90-2 / 11' (Isomeres 2): 102435-04-1 / 11'' (Isomeres 1): 102434-90-2 / 11' (Isomeres 2): 102435-04-1 / 11'' (Isomeres 3): 102434-90-2 / 11' (Isomeres 2): 102435-04-1 / 11'' (Isomeres 3): 102434-90-2 / 11' (Isomeres 2): 102435-04-1 / 11'' (Isomeres 3): 102434-90-3 / 11' (Isomeres 2): 102435-04-2 / 11'' (Isomeres 3): 102434-90-3 / 11'' (Isomeres 3): 102434-90-8

- ¹⁾ ^{1a)} P. B. D. de la Mare und R. Bolton, Electrophilic Additions to Unsaturated Systems, Elsevier, Amsterdam 1982. ^{1b)} F. Freeman, Chem. Rev. 75, 439 (1975).
- ^{2) 2a)} F. Marcuzzi, G. Melloni und G. Modena, J. Org. Chem. 44, 3022 (1979). ^{2b)} Y. Wang und L. M. Dorfman, Macromolecules 13, 63 (1980).
- ³⁾ J. P. Kennedy und E. Maréchal, Carbocationic Polymerization, Wiley Interscience, New York 1982.
- ⁴⁾ H. Mayr, R. Schneider und R. Pock, Makromol. Chem. 19 (1986), im Druck.
- ⁵⁾ Vgl. z. B. H. Mayr, H. Klein und G. Kolberg, Chem. Ber. 117, 2555 (1984).
- ⁶⁾ Vorläufige Mitteilung: H. Mayr und R. Pock, Tetrahedron Lett. 24, 2155 (1983).
- ⁷ H. Mayr, Angew. Chem. 93, 202 (1981); Angew. Chem., Int. Ed. Engl. 20, 184 (1981).
- ⁸⁾ H. Mayr und W. Striepe, J. Org. Chem. 48, 1159 (1983).
- ⁹⁾ H. Mayr und W. Striepe, J. Org. Chem. 50, 2995 (1985).
- ¹⁰⁾ R. Pock, H. Mayr, M. Rubow und E. Wilhelm, J. Am. Chem. Soc., zur Publikation eingereicht.
- ¹¹⁾ R. Pock, H. Klein und H. Mayr, Chem. Ber. 119, 929 (1986).
- ¹²⁾ B. Capon und S. P. McManus, Neighboring Group Participation, Vol. 1, S. 58ff., Plenum Press, New York 1976.
- ¹³⁾ C. A. Grob, Angew. Chem. 81, 543 (1969); Angew. Chem., Int. Ed. Engl. 8, 535 (1969).
- ¹⁴⁾ C. K. Ingold und F. R. Shaw, J. Chem. Soc. 1949, 575.
- ¹⁵ R. Pock und H. Mayr, Chem. Ber. 119, 2497 (1986), nachstehend.
 ¹⁶ H. Mayr und R. Pock, Tetrahedron, im Druck.
- ¹⁷⁾ B. Giese, Acc. Chem. Res. 17, 438 (1984), und dort zitierte Literatur.
- ¹⁸⁾ E. M. Arnett und C. Petro, J. Am. Chem. Soc. 100, 5408 (1978).
- ¹⁹⁾ E. M. Arnett und N. J. Pienta, J. Am. Chem. Soc. 102, 3329 (1980).
- ²⁰⁾ J. B. Pedley und J. Rylance, Sussex-N. P. L. Computer Analysed Thermochemical Data: Organic and Organometallic Compounds, Sussex 1977.
- ²¹⁾ A. Streitwieser jr., Solvolytic Displacement Reactions, S. 95f., McGraw-Hill, New York 1962.
- ^{22) 22a)} M. T. Bowers, Gas Phase Ion Chemistry, Vol. 2, S. 36, Academic Press, New York 1979. ^{22b)} R. B. Turner, P. Goebel, B. J. Mallon, W. von E. Doering, J. F. Coburn jr. und M. Pomerantz, J. Am. Chem. Soc. 90, 4315 (1968). ^{22e)} E. M. Arnett, R. P. Quirk
- ²³⁾ ^{23a)} G. A. Olah und G. Liang, J. Am. Chem. Soc. 92, 3977 (1970).
 ²³⁾ ^{23a)} G. A. Olah und G. Liang, J. Am. Chem. Soc. 96, 195 (1974). ^{23b)} G. A. Olah, A. L. Berrier und G. K. Surya Prakash, J. Org. Chem. 47, 3903 (1982).
 ²⁴⁾ G. Collin, U. Jahnke, G. Just, G. Lorenz, W. Pritzkow, M. Röllig, L. Winguth, P. Dietrich, G. E. Divise, M. C. Dietrich, M. G. Divise, M. Chem. 24, 1976 (1976).
- C.-E. Döring, H. G. Hauthal und A. Wiedenhöft, J. Prakt. Chem. 311, 238 (1969). ²⁵ E. V. Couch und J. A. Landgrebe, J. Org. Chem. 40, 1636 (1975).
- ²⁶⁾ P. Asmus und M. Klessinger, Tetrahedron 30, 2477 (1974).
- ²⁷⁾ P. Masclet, D. Grosjean, G. Mouvier und J. Dubois, J. Electron Spectrosc. 2, 225 (1973).
 ²⁸⁾ W. K. Chwang, V. J. Nowlan und T. T. Tidwell, J. Am. Chem. Soc. 99, 7233 (1977).
- ²⁹⁾ R. Huisgen, P. H. J. Ooms, M. Mingin und N. L. Allinger, J. Am. Chem. Soc. 102, 3951 (1980).
- ³⁰ G. Melloni, G. Modena und U. Tonellato, Acc. Chem. Res. 14, 227 (1981).

- ³⁵⁾ G. H. Schmid und D. G. Garratt in The Chemistry of Double-Bonded Functional Groups (Ed. S. Patai), S. 725f., Wiley, New York 1977.
- ³⁶⁾ H. J. Bergmann, G. Collin, G. Just, G. Müller-Hagen und W. Pritzkow, J. Prakt. Chem. 314, 285 (1972).
- ³⁷⁾ A. D. Allen, Y. Chiang, A. J. Kresge und T. T. Tidwell, J. Org. Chem. 47, 775 (1982).
- ³⁸ C. F. H. Allen und S. Converse, Org. Syntheses, Coll. Voll. 1, 226 (1932).
 ³⁹ Die Zuordnung zu cis- und trans-10a" gelingt aus der ¹H-NMR-Absorption von 1-H: Y. S. Tsybin, A. V. Kessenikh und R. N. Volkov, Zh. Org. Khim. 5, 806 (1969).

[34/86]